Subscribe Us

ASTRONOMÍA. La sonda Juno de la NASA ofrece la primera vista en 3D de la atmósfera de Júpiter

 

La apariencia de bandas de Júpiter es creada por la "capa meteorológica" que forma las nubes. Esta imagen compuesta muestra vistas de Júpiter en luz infrarroja y visible (de izquierda a derecha) tomadas por el telescopio Gemini North y el telescopio espacial Hubble de la NASA, respectivamente. Fuente: Observatorio Internacional Gemini / NOIRLab / NSF / AURA / NASA / ESA, MH Wong e I. de Pater (UC Berkeley) et al.

Los nuevos hallazgos de la sonda Juno de la NASA que orbita Júpiter brindan una imagen más completa de cómo las características atmosféricas distintivas y coloridas del planeta ofrecen pistas sobre los procesos invisibles debajo de sus nubes. 

Los resultados destacan el funcionamiento interno de los cinturones y zonas de nubes que rodean a Júpiter, así como sus ciclones polares e incluso la Gran Mancha Roja.

Los investigadores han publicado varios artículos sobre los descubrimientos atmosféricos de Juno en las revistas Science y Journal of Geophysical Research: PlanetsArtículos adicionales aparecieron en dos números recientes de Geophysical Research Letters.

Estas nuevas observaciones de Juno abren un cofre del tesoro de nueva información sobre las enigmáticas características observables de Júpiter. Cada artículo arroja luz sobre diferentes aspectos de los procesos atmosféricos del planeta, un maravilloso ejemplo de cómo nuestros equipos científicos, de diversidad internacional, fortalecen la comprensión de nuestro sistema solar.

Juno entró en la órbita de Júpiter en 2016. Durante cada uno de los 37 pases de la nave espacial por el planeta hasta la fecha, un conjunto de instrumentos especializados ha mirado por debajo de su turbulenta cubierta de nubes.

Comparación de la Tierra de la Gran Mancha Roja de Júpiter

Esta ilustración combina una imagen de Júpiter del instrumento JunoCam a bordo de la nave espacial Juno de la NASA con una imagen compuesta de la Tierra para representar el tamaño y la profundidad de la Gran Mancha Roja de Júpiter. Fuente: JunoCam Datos de imagen: NASA / JPL-Caltech / SwRI / MSSS; Procesamiento de imágenes JunoCam por Kevin M. Gill (CC BY); Imagen de la Tierra: NASA

El radiómetro de microondas de Juno (MWR) permite a los científicos de la misión mirar debajo de las nubes de Júpiter y sondear la estructura de sus numerosas tormentas de vórtice. La más famosa de estas tormentas es el icónico anticiclón conocido como la Gran Mancha Roja. Más ancho que la Tierra, este vórtice carmesí ha intrigado a los científicos desde su descubrimiento hace casi dos siglos.

Los nuevos resultados muestran que los ciclones son más cálidos en la parte superior, con densidades atmosféricas más bajas, mientras que son más fríos en la parte inferior, con densidades más altas. Los anticiclones, que giran en la dirección opuesta, son más fríos en la parte superior pero más cálidos en la parte inferior.

Los hallazgos también indican que estas tormentas son mucho más altas de lo esperado, algunas se extienden 60 millas (100 kilómetros) por debajo de las cimas de las nubes y otras, incluida la Gran Mancha Roja, se extienden más de 200 millas (350 kilómetros). Este sorprendente descubrimiento demuestra que los vórtices cubren regiones más allá de aquellas donde el agua se condensa y se forman las nubes, por debajo de la profundidad donde la luz solar calienta la atmósfera.

La altura y el tamaño de la Gran Mancha Roja significa que la concentración de masa atmosférica dentro de la tormenta podría ser potencialmente detectable por instrumentos que estudian el campo gravitatorio de Júpiter. Dos sobrevuelos cercanos de Juno sobre el lugar más famoso de Júpiter brindaron la oportunidad de buscar la firma de gravedad de la tormenta y complementar los resultados de MWR en su profundidad.

Con Juno viajando bajo sobre la plataforma de nubes de Júpiter a aproximadamente 130.000 mph (209.000 kph), los científicos de Juno pudieron medir cambios de velocidad tan pequeños como 0.01 milímetros por segundo utilizando una antena de seguimiento de la Red de Espacio Profundo de la NASA, desde una distancia de más de 400 millones de millas (650 millones de kilómetros). Esto permitió al equipo limitar la profundidad de la Gran Mancha Roja a unas 300 millas (500 kilómetros) por debajo de las cimas de las nubes.


Cinturones y Zonas

Además de los ciclones y anticiclones, Júpiter es conocido por sus cinturones y zonas distintivos: bandas de nubes blancas y rojizas que envuelven el planeta. Los fuertes vientos de este a oeste que se mueven en direcciones opuestas separan las bandas. Juno descubrió previamente que estos vientos, o corrientes en chorro, alcanzan profundidades de aproximadamente 2.000 millas (aproximadamente 3.200 kilómetros). 

Los investigadores todavía están tratando de resolver el misterio de cómo se forman las corrientes en chorro. Los datos recopilados por el MWR de Juno durante múltiples pasadas revelan una posible pista: que el gas amoníaco de la atmósfera viaja hacia arriba y hacia abajo en una alineación notable con las corrientes en chorro observadas.

Siguiendo el amoníaco, encontramos células de circulación en los hemisferios norte y sur que son de naturaleza similar a las 'células de Ferrel', que controlan gran parte de nuestro clima aquí en la Tierra. Mientras que la Tierra tiene una célula Ferrel por hemisferio, Júpiter tiene ocho, cada una al menos 30 veces más grande.

Los datos MWR de Juno también muestran que los cinturones y las zonas experimentan una transición alrededor de 40 millas (65 kilómetros) debajo de las nubes de agua de Júpiter. A poca profundidad, los cinturones de Júpiter son más brillantes con luz de microondas que las zonas vecinas. Pero a niveles más profundos, debajo de las nubes de agua, ocurre lo contrario, lo que revela una similitud con nuestros océanos.

A este nivel se conoce como el 'Jovicline' en analogía a una capa de transición vista en los océanos de la Tierra, conocida como termoclina, donde el agua de mar pasa bruscamente de ser relativamente cálida a relativamente fría.

Ciclones polares

Juno descubrió previamente arreglos poligonales de tormentas ciclónicas gigantes en ambos polos de Júpiter: ocho dispuestos en un patrón octagonal en el norte y cinco dispuestos en un patrón pentagonal en el sur. Ahora, cinco años después, los científicos de la misión que utilizan observaciones del Mapeador de auroras infrarrojas jovianas (JIRAM) de la nave espacial han determinado que estos fenómenos atmosféricos son extremadamente resistentes y permanecen en la misma ubicación.

Los ciclones de Júpiter afectan el movimiento de los demás, haciendo que oscilen alrededor de una posición de equilibrio. El comportamiento de estas oscilaciones lentas sugiere que tienen raíces profundas.

Los datos de JIRAM también indican que, como los huracanes en la Tierra, estos ciclones quieren moverse hacia los polos, pero los ciclones ubicados en el centro de cada polo los empujan hacia atrás. Este equilibrio explica dónde residen los ciclones y los diferentes números en cada polo.

Más sobre la misión: NASA

Publicar un comentario

0 Comentarios